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ABSTRACT

This thesis presents a criterion for use in obtaining
a "best" approximation to a certain desired sampled.data system
under conditions such that the input to the system is a non-station-
f ary random signal corrupted by additive noise. The criterion is
' applied to both a time-invariant system and time-varying system.

Physically realizable solutions for the optimum system are obtained

in each case,
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* CHAPTER I
INTRODUCTION

Although the sampling theorem was expressed in a general
form by Cauchurj* more than a century ago, sampled-data systems
received little attention until the early 1940's when radar fire-
control problems became of interest.

Sampled-data systems have come of age within tﬁe past
decade, primarily because of the increased use of digital computers
in control systems, and the greatly expanded use of telemetry with
the associated importance given to efficient use of available
communication channel capacity.

The techniques for the synthesis of sampled-data systems
have lagged considerably behind the analogous state-of-the-art of
continuous-data systems. However, design methods developed for
continuous-data systems have been almost ugiversally extended and
applied to sampled-data systems.

One of the first design philosophies for sampled-data

systems was proposed by Linvill,8 who viewed sampling as a form of

*Numerical superscripts refer to entries in the bibliography.
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2
amplitude modulation. Probably the most important philosophy was pro-

posed by Ragazzini and Zadeh,u

who introduced the theory of the 2z
transform, Other basic design philosophies have been proposed by
Browm,‘2 who used a difference equation approach, and Smith, Lawden,
and Bai.ley,l3 who interpreted sampled-data system design as a pre-
diction problem.

Statistical methods have played an increasingly important
role in the design of control and communications systems in the past
fifteen years. The application of statistical methods to system
design as originally presented by w1oner15 has been refined and
extended in many ways and by many aut.hors.16

This thesis presents a éynthesis procedure whith may be
used to obtain optimum compensation for sampled-data systems with
non-stationary random inputs, the criterion for the optimization
being a mean amplitude-set-time weighted error criterion. Results
are obtained for both time-invariant systems and time-varying systems.
Solutions are presented in the form of equations which may be
synthesized by standard methods. The conditions for the physical

realization of the solutions are discussed in each case,




CHAPTER II

THE OPTIMIZATION CRITERION

2,1 The Criterion for Continuous Systems

Murphy and Saharalo have proposed, and have defined for
continuous systems, an optimiszation oriterion of rather general
form which is based upon the minimization of a function of the
system error which may be weighted with respect to errdr ampli-
tude, the relative time of the error occurrence, é.nd the subset
of the sample space from which the error is taken. In its most

general form this criterion is

. L] @ T
- ° L3 . L]
c -_J"m(x)—j‘p(x,y) Tzi-:w 5%: L Wt O exyit)] ot ay ax,  (2.1)

o

where t i3 the real time variable, T o is the length of the system

memory, X and y are the coordinates of the.error sample space,

e(x,y;t) is the system error, Fle(x,y;t)] is an amplitude weight-

ing function, w(x,y;'l'o;t) is a time weighting function associated

with the relative occurrence time of the error, p(x,y) is a proba-

bility density function associated with the error sample space, and
. m(x) is the subset weighting parameter.




Such a criterion is ideally suiteu for use in designing
controi systems which must operate over a wide range of ambient
conditions. The parameter m(x) can be varied according to the
rélative importance of errors occurring under the v;i'ious conditions
and then weighted by the probabllity that the system will be operat-
ing under these particular conditions., .

2,2 Extension of the Criterion to Sampled.Data Systems
If the system under consideration is completely sampled,

that is, if all parts of the system operate with sampled data, the
integrals in equation (2.1) may be replaced by diserete summations.
Similarly, the limiting process may be replaced with its discrete
equivalent, The criterion for sampled-data systelms t}';us becomes

I
P 1 (1, 3;NT3nT)F{ e(4, 33nT)].
1—-Iij-§-:-J 4 N—>° ’in'ﬁng—g DT et Jim

In equation (2.2) T is the system sampling interval, Fle(i,j;nT)]
is a function of the system error amplitude, w(i,j;NT;nT) is a
time weighting function, NT is the length of the system memory,
P1 j is the probability associated with the jth sample point in the
ith subset of the error sample space, m, is the weighting parameter
of the ith subset, J is the number of sample points in the largest
subset, and I is the number of subsets.

Although the summation indices n, J, and 1 have no physical
interpretation for negative integers for a finite process starting

at time nT = 0, the criterion is written in a symetric form to

(2.2)




allow application of statistical design methods. The weighting
functions, the error, and thus the criterion are assumed to be
zero for terms arising from negative s\-n.tioh 1ntégera.

2,3 A Restriction
Although the amplitude weighting function may, in general,
be an arbitrary function of the error, the function

Me(1,3;nT)] = ez(i,j;n'l‘) (2.3) .

is chosen for use in the sequel. Certainly, this choice of amplitude
weighting will not always be the ideal in any system c?nsidered.
however, there are two compelling reasons for its, selection. First,
a specific function 1s necessary in order that the minimization
process may be carried out, and second, it is of relatively simple
form, which leads to a workable design. With this restriction the
criterion, equation (2.2) becomes

I
C= P,,ln 1 w(i,3NTsnT)e2(4, J3nT). (2.4)
e miaj-.r 1) oo -Z'N'Ti'nj-n RmnEe T din

The criterion defined by equation (2.4) may be considered

to be a generalization of the familiar mean-square.error criterion
which has found much use in the design of optimm control and
communications systems, ‘




The rollouix;g more compact forms of equation (2.4) will
often be used for brevity in writing equations in the sequel.

-

C= («w(i,j;NT;nT)ez(i,JmT)%k,)i‘

or simply

o= e M

The symbols «( )1)3):\. represent the statistical average
or expected value of the argument taken with respect to the three

indicated indices, the argument being the quantities bdtween the

i
innermost Lrackets.

(2.5)

(2.6)




CHAPTER III
SOME PRELIMINARY CONSIDERATIONS

The basic problem considered in this thesis is the problem
of obtaining a "best" appro::lutio’n to a given desired system, The ,
basic definitions and relationships necessary to attain this end will
be presented in this chapter,

. |
I 3,1 The Model

" .
A functional diagram of the model which will be used in
this thesis to define and clarify the mathematlical conventions and

notation for the systems or processes under consideration is shown

in Figure 1, page 8.
| As indicated by Figure 1, the system sampled error,
e(nT), is defined as the difference between a certain desired
output, cd(nT), and the actual system sampled output, c‘(n'l‘).
The input to the actual system, the reference input,
r(t), is assumed to consist of a siml,ﬁs(t), containing the de-
sired input information, and a noise, n(t), which is an undesirable

corruption of the input information.
' The weighting sequence of the desired system is defined
to be g,(kT), while that of the actusl system is defined as g, (kT).
. Both the desired system and the actual system are assumed to be
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linear and finite. The weighting sequence of.tho desired system is
a set of linear operators which, when applied to the sampled signal
input, ylelds the desired output sequence, ' Similarly, the weighting
sequence of the actual system is the set of linear operators which,
when applied to the sampled :;eference input, will yleld the actual
system output sequence. ‘ .

The summing device is assumed to be linear and ideal,
and all samplers are assumed to be ideal and to operate in synchronism.
The sampling frequency is assumed to be at least twice the highest
signal frequency in the system.

Although Figure 1 may be interpreted equally well to
represent either a control or a comunicatj.ons gsystem,, it seems
desirable to amplify the diagram in the case of a general closed-
loop control system. Figure 2, page 10, presents a functional
diagram of such a closed-loop or feedback control system which may
be used to represent the actual system (labeled ga(kT) in Figure 1)
in greater detail when such a system is considered.

In Figure 2, p(kT) is defined as the weighting sequence
of the system plant, and g c(kT) is defined as the weighting sequence
of a compensating device placed in the system in order to realize
the optimum weighting sequence for the actual system with a contam.
inated input signal. The symbols o(nT) and Y(nT) denote the output
sequences of the compensating device and the system plant respective.
ly. All assumptions made with reference to Figure 1 may also be
applied to Figure 2.
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11
3.2 The Convolution Summation -
In analogy with the convolution integral which expresses
the relationship between the input and output signals of continuous-
data systems, a convolution summation may be defined which relates
the input and output sequences of linear, constant parameter sampled-
data systems, Using symbols defined with reference to Figure 1, page 8,

the following convolution summations can be written.

cq(nT) = k‘z g (nT=kT)s(kT) (3.1a)
or
cd(nT) = kz s(nT-kT)gd(kT) (3.1b)

Although it is assumed that most systems or processes
to be considered are of the so-called terminal classification and
therefore have a finite memory and operate with sets of signals
which are all members of finite sample spaccs, the limits of summation
in equation (3.1) may be extended to infinity as indicated since the
additional terms created are all zero and therefore contribute

nothing to the sums.

3.3 The Weighted Second-Order Correlation Sequence

Murphy and Bold’ have defined weighted two-space correlation

functions for continuous stationary signals, and Murphy and Saharalo

have defined weighted second-order correlation functions for continuous
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non.stationary signals., In analogy with these deﬂni;.ions, weighted
second-order auﬁocorrelation sequences can be defined, Using symbols
which were defined with reference to Figure 1, page 8, the weighted
second-order autocorrelation sequence of th’e'referonce input with re.
spect to the weighting function w(i,j;NT;nT) is

§, o (KT,1T) = g - n=>:- w((w(i,ng;nr)f(nr+ler)r(nr+1r) >3>1 (3.2)
]

In a similar manner the weighted second-order cross-
correlation sequence between the reference input and the signal
input with respect to w(i,3;NT;nT) is defined as

I

$ersKTAD) = Un 1 Y ((wld, SNaDrnTae(nran) Y. (3.3)

N> © 2041 ne=—=

In equations (3.2) and (3.3) ¢ » represents the weighted second-
order correlation sequence of the signal or signals identified by the
subscripts appurtenant to the symbol,

3.4 The Pulse-Spectral Density

The spectral density of a continucus signal is defined as
the Fourier or lLaplace transform of the autocorrelation function
of the signal., The discrete equivalent of this statement defines
the pulse-spectral density of a sampled signal as the two-dimensional
z transform of the autocorrglation sequence of the signal.

The relationships between the weighted second-order
autocorrelation sequence and the weighted pulse-spectral density 6f
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the sampled reference input are .
br(210%) = 3 T e GTAT) 75,7 (3.40)
and
o (KT 51T)= ( ) k-1, 1-1
3’ Brr(2002p) 2 8y d2y da, (3.4b)
2™

The weighted pulse-cross-spectral density is defined in a similar

manners:

Brs(210%) = z L OTaD) ™0  (.se)
2

§ o (KT,1T) = (-2%3) i i B, (%,2) 2,5be, 1t dz, aa, (3.59)

In equations (3.4) and (3.5) Iw represents the weighted pulse-spectral
" density of the signal or signals identified by the subsecripts
appurtenant to the symbol. The symbols z, and z, are the complex
variables of the four-dimensional 2 transform space. The integration

contours Al and A2 are the unit circles in the 2z, and 2z, planes

respectively.

3:5 Some Basic Relationships
This section will present in mathematical form the basic

relationships between the various signals and components of the




L
system represented by the model diagrammed in Figures 1 and 2,
pages 8 and 10. |
With reference to Figure 1 and Ithe associated definitions of
Section 3.1, the following relations can be written.

o(nl) = o (nl) - o () ' ' (3.6)
r(t) = s(t) + n(t) | (3.7)

Since sampling is a linear operation, the sampled input to the actual

system is .
r(nT) = s(n;l‘) + n(nT). (3.8)

Following the definition of convolution summations of Section 3.2,
the actual system output may be written

¢, (nT) = k_z g, (nT-KT)r (kT) (3.90)
or [}
c,(nT) = 2 r(nT-kT)ga(nT). _ (3.9v)

|

t

4



Substitution of equations (3.1b) and (3.9b) into equation (3.6)
yields the relationship between the system sampled error and the
sampled reference input and the sampled signal input:

e(nT) = ) [s(nT-kT)gd(kT)-r(nT-kT)g‘(l(r)].

This result also indicates the effect of the syste;n weighting
sequences on the system error.

Referring now to Figure 2 and the associated definitlons
of Sections 3.1 and 3.2, these relationships may be noted.

.

o (nT) = r(nT)-ca(n'l‘) ‘
Y(nT) = ) g, (nT-kT)O (kT)

or

©

Y(aT) = ) o(nT-kD)g,(kT)

k:—w

c (nT) = )  p(nT-KT)Y(KT)

ks=®

or

c (nT) = 3 V(nT-kT)p(kT)

k==e

15

(3.10)

(3,10)

(3.12a)

(3.12v)

(3.13a)

(3.13v)




Combining equations (3.13a) and (3.12b) ylelds

¢, (nT) = kz p(nT-kT) ) o(KI-1T)g (17).

= -0 lz=»

Substituting equation (3.11) into equation (3.14) ylelds

ca(nT) = Z p(nT-kT)]_:iu gc(lT)[r(kT-l’l‘)-ca(kT-lT)].

k=

Equation (3.15) indicates the implicit relationship between the
input and output of the closed-loop system and the weighting
sequences of the system components. It should be‘ notezl that
this equation cannot, in general, be solved explicitly for the
output sequence due to the different arguments of the output

sequence as it appears in the equation.

16

(3.14)

(3.15)




CHAPTER IV
THE OPTIMUM SYSTEM

The criterion developed in Sections 2.2 and 2.3 will
be applied in this chapter to the model described in Section 3.1
with the aim of finding an optimum system. The optimum system
is defined as the physicaliy realizable system which has for its
weighting sequence, or equivalently, its pulse-transfér function
that sequence or function which minimizes the cri'terion, equation
(2.4). Solutions for this function will be obtained and the
conditions for their physical realization will be described.
If the system under consideration is a closed-loop control system
as shown in Figu;e 2, page 10, knowledge of the optimum system
weighting sequence or transfer function and the conditions on
its realizability allows the synthesis of a compensating device
to correct the system plant in such a way as to achieve the optimum

system.

4,1 Time-Invariant Systems

In this section systems with plants which are invariant
with respect to time will be considered.

Again with reference to Figure 1, page 8, substitution
of equation (3.9b) into equation (3.6) and the result into equation
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(2.4) yields

J N

I ®
- 2
C = i=Z-I m, j=ZJ Pij lim i} _2%_:1_ n=z-'N [eq (nT)-ch(nT)kzz_aga(k‘l‘)r(nT-kT)

© @

) sa(kT)r(nT-kT)lz g,(1T)r(nT-1T)]. ' (4.1)

k== = -0

Comparison of this result with the definitions of Section 3.3
suggests that equation (4.1) can be written as

o

c =C¢wcdcd(k'r,;'r) - ) gD ¢wcdr(kT,lT-hT)

h==w .
- h=2-° g(hT) ¢wcdr(n,1<r-m)+ ;_., g(hT)

«©

.Y g(eT) ¢wrr(kT-hT,lT-fT)]|kT_

(4.2)
fz=w» -1T=0 '

The interchange of the operations of averaging and summation is
usually justifiable in equations describing physical systems.

This is discussed in greater detail in Chapter V. Equation (4.2)
shows that the optimization criterion is cbmpletely determined when
the unit impulse response of the system and the weighted second-
order correlation sequences of the reference input and the desired

output are known.
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The pulse-transfer function which minimiges the right
side of equation (4.2) may now be found through application of
the methods of variational calculus.
Let A(kT) be defined as an arbitrary, physically realizable
welghting seﬁuence satisfying the equation

A(KT) =0 (4.3)

for kT < 0 and kT > NT, where NT is the length of the system memory,
and which has no discontinuities at either kT = O or kT = NT.,

Now let
g(kT) = g(kT) + ) (kT), (4.4)

where & is an arbitrary small real number. Equation (4.2) now be-

comes

C + AC ={¢wdcd(k'r,n) - Y [ghr) + sa(nr)] iwcdr(kT,lT-hT)

he=o

- i Cg(nT) + &A(nT)] ¢"cdr(lT,kT-hT) *h}lo Ce(nr) + saum)d

. .,[ £T) + 8A(£T)] (kT-hT,1T-£T)
L Letem + e }|RT=1T=O

f==w

(4.5)

Subtracting equation (4.2) from equation (4.5) yields the first

variation of C as
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AC ={.h=§;° Gl(h’r)¢wc (KT, 1-hT) - =Z_ 6x(nr)¢wdr(1'r,k'r-h'r)

+ 2 12 . (g(nT)ON (£T)+g(£T) A (hT)

hz=ofz=-
+t>2x(h'r)x(f'r)] (kT-hT,1T-£T) | '
borr } KT=1T=0 (4.6)

The negessary condition for an extremum of C is that

sl |
%—% Im = 0. | (4.7)

Applying this to equation (4.6) yields i

%‘\_g |a=o { 2 A ¢w r(kT 17-hT)

A g AT + 5 ¥ lemnen

o= - 0 h==® fz=wx

+

g(£TIM(fT)] ¢m(kT-hT,1T-fT)z | = 0. (4.8)
kT=1T=0

Again, the interchange of operations is usually justifiable in »
physically based equations., Equation (4.8) may be written in a

more meaningful form as




2l
{h-_-,i—o X(hT)[’wcdr(kTolT-hT) + "cdr(]_'r’k'r_h-r)]

- 2.. g(hT) f___):_u AET) ¢, (KI-hT,17-T)
h==e f==e KT1T=0

Interchanging the order of summation in.tho first double summation
term ylelds

[ Y A ¢wcdr(k'r,1'r-h'r) + ¢wcdr(1'r,1;fr-hr)]

- X MnT) ) g(sT) ¢, (AT-hT,KT-£T)

h=—o fo=wo

2 A (nT) 2 g(fT) ¢, (KI-hT,1T-1T) f

= 0, (4.10)
kT«l1T=0

which may be simplified to

2 x(m){ Y el [#m(lT-l.mT,kT-fT) + § o (KT-hT,17-£T)]

= 0, (4.11)

- KT,1T-hT) - 1T,kT-hT
e o ) = o )} lkmm




In order for the extremum determined by (4.7) to be a
minimum, it is sufficient that

%c

d 82 = 0

5=0

The second partial derivative of the first variation of C with

respect to 6 1s

= A (hT A (LT KT=hT,1T={T
L 5 aem § o g 1 |

g

382

kT=1T=0,

Writing this result with ¢ expanded yields |

3% .2 ¥ A (hT) e lm & (4, §sHTsnT)
352 6=0 h:ch fi=o N=>o n___z_n <

-

r(nT-hT)r(nT-£T) )J>1 .

Changing the order of operations ylelds

(o]

2
oA

=2 lim 1 w(i, JsNT;nT)
36° l6=0  W¥>= ZNA n}:n ((wta, 3313

N

+ ¥ AGDr(nT-hT) Y Kf‘f)’(“r'm'>3>a

= - ® fezmwo

(4.12)

(4.13)

(4.14)

(4.15)
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Equation (4.15) is of the form

2 N
Q4| 2um 1 Y w(e,3NmeTi(nD), (4.16)
95 |8=0 N> 2N+1 n==N

where m(nT) is the response of a system with weighting sequence
A(kT) to an input r(nT). In order for the condition of equation
(4.12) to be satisfied it is sufficient, but not necessary that

w(1,JiNT;nT) >0, == < nT <, (4.17)

This restriction does not place an especially severe ];imitation

on the choice of the time weighting function w(i,J;NT;nT). It
does, however, exclude certain weighting functions which may other-
wise be acceptable,

With a choice of time weighting function which satisfies
equation (4.17), the solution for the optimum system can be carried
out. The function which minimizes the system error must cause the
first derivative of the variation of the criterion to be zero for
an arbitrary selection of A(hT), subject, of course, to the restric-
tion of equation (4.3), so

{ i g(fT) (¢ et (1T-hT,kT-£T) + ¢m(kT-hT,lT-fT)]

kT=1T=0

- b r(kT,l’I-hT) - ““d r(lT,k‘r-hT)} =0 (4.18)
: OTNT
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Taking the two-dimensional z transform of equation (4.18) yields

= as @ k— - 0

{12 P 2 zz'k _Z_’ g(eT) [¢ (1T-hT,KT~£T) + § ppop (KT-NT, 1T-£T)]

c -l X
=Z. 2y 2 [¢wcdr(kr,1'r.h1) “ Yo r (17,KT-hT)

k== =0  (419)
KT=1T=0
OShT<NT
Changing the order of summation ylelds
{ f=z-w g(f1) [!wrr(zl’zz)zl.mzz-ﬂ + !urr(zz’zl)zz-mzfm]
e a bt | (4, 20)
r(z,,2,)z - (2.42.)2 0 :
RN lm"dr 1>"2""2 }OS}‘M.T

which may be simplified to

{[G(zz) Eor(2y02)) - lwcdr(ZZ’zl)le-hT

= 0
f} losrx'rsm (.21)

quation (4.21) is

+ [G(zl) | ] (zz,zl) -
The inverse two-dimensional z transfo

-hT h-l f-l
dzl dz2

{_‘;_11_'2_ f f (6(5,) B, .(2)02,) - 'we r(‘z’“l)]‘l

2 1
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+ A 8§ o) B (3,e)

2 § f 1 2%

A2 ™y
-hT_ hel fal

- der(zl,zz)]zz 2, T, - dz, ds, o =0 (4.22)
It can be shown that the first double integral cannot be the negative
of the second, The only admissible solution to this equation is,

therefore,

6(z,) gw,r(zl.zz) - !wcdr("z’“l) =0 (4.23)
~ :

0(2) B (20%)) = B r(a,2,) = 0 ‘ (o 24)

in the region O<hT<NT. Solving for G(zl) Yyields a solution for the
optimum pulse-transfer function of extremely simple form:

G(zy) = !"04’(21’22) » (4.25)
4,2 ical Realizability of Solutlon

Equation (4.25) represents the optimum pulse.transfer
function for the system in the sense of the criterion defined by
equation (2.4), without regard for physical realizability, The
result assumes that the weighted pulse.spectral density of the
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reference input, and the weighted cross-pulse.spectral density for
the desired output and the reference input are known.

Most functions of physical origin possess Lgplace transforms
and it is known that a z transform exists for any ﬁi':xction which has
a Laplace transform. The optimum pulse-transfer ﬁn}ction may. there-
fore be found "zif the weighted autocorrelation sequence of the refer-
ence input, and the weighted cross-correlation sequence between the
desired output and the reference input are known, rather than the
corresponding g\;jlse-spectral densities, )

| Two cor;dit:\.ons must be satisfied in order for the solution,
equation (4.25), to be physically realizable. They are

.

g(kT) =0 for kT <O (4.26)
and

Hm  g(T) = 0 | (%.27)

KT >w

For these conditions to be satisfied G(zl), which is in
the form of a rational polynomial in 2y must exhibit no positive
power of 2y when expanded in a power series, and must have no poles
outéide the unit circle in the complex % plane,

If there are one or more poles of G(zl) present outside

the unit circle a heuristic argument similar to that given by Bode
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and Shannon” may be used to find a form of G(s,) which is physically
realizable.

Let the ordinary pulse-spectral density of the reference
input be written as

B, (202) = B0 (202,) 4,0 (2,8) (28

where eri (zl,zz) has poles only inside the unit circles in the

Y anq 2, planﬁs and § rro (zl,zz) has poles only outside the unit
circles. The input r(nT) is first converted to a sequence of
sampled white noise by passing it through a unit with the physically
realizable transfer function | : ’

- 1
Gl (21,22) = 1 ( (uozg)
ﬁn- zl,zz)
The white noise must then be passed through a physically unrealizable
unit with the transfer function

6, (3,2,) = %) T 40)

Gy (24,2,

to obtain the optimum response. This optimum response is the sum
of two statistically independent components:t 1) a completely
predictabie component due to all of the samples of white noise
which have previously occurred and the pulse (if one exists) that

is simultaneously occurring, and 2) a completely unpredictable




28
component due to puléos of white noise which will occur in the
future.

On the average, the best physically realizable measure
of the second of these components is zero, Therefore, the optimum
physically realizable pulse-transfer function is obtained by .making

0, kT<0

BT = g7dg Hayun,)00)], k>0, (5.30)

By combining equations (4.30) and (4.25) it is then found that the
optimum physically realizable pulse-transfer function is

1 ) ,
1 i" .k 1 £ Eer (2952) !ucar(zl’zz) 2 k-1
k=0 1

d
= 1 %A
3 by A Ten) (8.32)

rr ‘71’72
Assuming the system plant is prescribed in physical form,

knowledge of the optimum physically realizable pulse-transfer

function of the system allows synthesis of the optimum compensator

for the system by standard methods.

4.3 Time.V ng Systems
This section is concerned with systems in which the plant

varies as a function of time. Since the method of solution of
Section 4.1 used the artifice of converting to the complex z-plane
and thence back to the time domain, this method may not be applied
to a system with time dependent components. A method of solution
will be described in this section which requires only time-domain

operations,
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The procedure is similar to that described by Cruzs which

makes use of a matrix characterization of the system in the time

domain.
matrix presented by Friedland.6

In particular, the system is described by a transmission
A linear system (either time.invariant

or time-varying) may be characterized by a lower triangular matrix.

For example, if a system has an input x(k), a weighting sequence

g(n,k) and an output y(n), the output matrix may be written in terms

of the input matrix and the system transmission matrix as follows.

or

Py(o)w
y(1)

Ly(n)J

I=0X

-3(0.0)
g(1,0)

Lg(ﬁ.m

0
g(1,1)

e(ﬁ.l)

All systems which are non-predicting,

. o | 'x(of
P 0 X(l)
o s(r.x.n)‘ LxZn)d

and therefore physically

realizable, have transmission matrices of the form of the matrix

G above,

Note particularly that g(n,k) = 0 for k > n.

Since in the present investigation, the output is of

interest at sampling instants only, the signals and components of

the system may be described conveniently and completely by matrices.

Let R be defined as the reference input matrix, 5 as the signal in.

put matrix, and N as the noise matrix. BEquation (3.8) can be

(4.33)

(4. 30)




written in matrix form as

R=S+N
or
r(1,3;0) ] (8(1,3;0) ]
r(1,5T) s(4,5T)
; - : +
r(i,&;n‘l‘i : Ls(i,,:];n'l‘)‘

The system erpgr matrix is defined as

[e(1,3;0) ]
E=le(i,T)

L°(1’3‘“T).

The actual system output matrix is defined as

The desired system output matrix is defined as

n(i;&;n'l‘).

(%.35)

(4,36)

(4.37)

(&.38)




[0,4(1,330
:g(i.g;'l‘;

’.3 T
fd(i j;nT)

The transmission matrices of the actual system and the desired

system are defined as

gd(nT,nTl

3

Similarly the plant matrix and the compensator matrix are defined,

respectively, as

e = |20
P(;T,O)

and

0 = [0
_goa,T,o,

0
p(T,T)

p(ﬁT.T)

0
8o (T>T)

g, (nT,T)

« o OO

p(nT,n1)|

e +« OO

gc(n'l‘,n'rl

(439)

(4.40)

(4,41)

(bo42)

(4.43)




With reference to Figures 1 and 2, pages 8 and 10, and associated
definitions, the following matrix relationships are evident.

E=Cd- Ca
Cd=GdS
Ca = GaR = Ga(S + N)

(2]
{]

-1
(1.+ PGc) PGc

The optimization criterion, equation (2.4), may be expressed in

j
matrix form as follows.

c= (((etwe >n>j>i

The time-weighting matrix, W, is defined as

w(1,3;NT;0) 0 ce . 0 ]
W= 0 w(i,j3NT3T) .. 0
0 0 o o w(i,j;n'r;nT)

The argument of the right side of equation (4.48) may be expressed as
tow t .
EWE-(Cd-Ca)W(Cd-Ca). :

(L. lt)

(4.45)

(4.46)

(k.47)

(4.48)

(4.49)

(L. 50)
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Expansion of this matrix ylelds

E' WB = (G4 - GaR)tH(GdS - G_R), (4.51)

EE = (st - o)b - W b6, - 0)s. o), - (4.52)

ot | t
EWE = (@, - ca)"'wmd - 6,)S - N Ga"man
t ' t ‘ ~
- s%a, - Ga)"man - N G:‘vl(Gd - a)s. (%.53)

’ I
If the signal and noise are statistically independent and if the

noise is assumed to have zero mean, the last two terms drop out

upon averaging. The criterion may therefore be written as
_ t t
¢ = <<<S Gy - Ga)t"(Gd -GS + N Gatman %)J)i (4. 54)
Let the matrix (G q =0 a) be defined in terms of general elements as
Gy - G) =G, = [egpq] : (4.55)
and the matrix Ga be defined as

6, = [y8] (456




and the matrix W be defined as

W=

[wpq]
Let the matrix of the product G :WG e be defined in terms of the
elements of the product as

GetWG o = (9]

and the matrix of the product G;‘WG a be defined as
6, W, = (8] |

In each case above p and q are non-specific row and column indices
respectively. The matrix product Getwse may be expressed in terms

of the matrix elements as

n+l n+l

- P
%pa VZI uzl- efpu "uv efvg’ q

o
(S
- -
L]
3
[\
*

It should be noted that W is a diagonal matrix of order n+l, [ equ]
is a lower triangular matrix of order n+l, [ egpu] =[ equt] and
[apq] is real symmetric matrix or order n+l. Similarly for the
product GatWGa,

(k.57)

(4.58)

(4.60)
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+1 n+l

=1 n+l
8 =?Zi a8pu Yuv a8vq, P T 0 ¢ ¢ '
pqv=u= q—l..-n"’lo
Consider now the products 5°G_"WG S and N'G WG N. Both of these
products are in the form of a one-element matrix, each being the
product of a square matrix premultiplied by a row matrix and post-
multiplied by a column matrix, In terms of the matrix elements the

first of these products is

n+l n+l
stc;e *wces =

Qa o
&4 T

Since the S matrices consist of only one row or column,equation

.

(4.62) may be written as

Writing equation (4.63) so that the elements of the S matrices are

displayed explicitly rather than by their position,

" _ n+l n+l
s Ge*‘mes = yz=1 le S(xT-1) &, s(y1-T) | .

Similarly,

&
N Ywo N = xT-T) B__ n(yT-T) |.
a WG, yi zi n(xT-T) B, n(yT

(4.61)

(4.62)

(4.63)

(L. 64)

(4.65)




Equation (4.64) can be written

+1 n+l n+l n+l

stcetwces = [:Z; x}=:1 v‘él uzl s(x1-1) g, ¥, vy s(y'r.r)]

L

Commuting the elements of the summand yields

% _ n+l n+l n+l n+l
see"'waes-[z Yy e

¥y=1 x=1 v=1 u=l e xu °

8(xT-T )w s(y'r-T):l

Similarly,

'k G, Yo N = [‘El z t’f: 2 abxu aBvy n(xT-T)w n(y‘I‘-T)]

y=1

I
As before, the weighted statistical autocorrelation sequences of the

signal and nolse are defined, respectively, as
BussKDYD) = (((eA-DURI-T)s(y1-T) ) .Y

and

$an YD) = (((nOA-TWGI-DRGT-D) ) M)

Using equations (4.69) and (4.70), the criterion, equation (4.54),

may now be written

n+l n+l n+l n+l

C= Zl 21 ZL Zl[egme‘vy¢wsa(ﬂ’ﬂ) * axu abvy fvmn

=1l x=1 V=1 u=

(xT,yT)]

(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

o nt e S e % ot
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or '

ril n+l n+l n+l
C =

((gy-8 ). (8s-8,) (xT,yT) (xT,yT)].
y=1 x=1 v=1 u= fa78a’xu 8a"8a vy ¢“3 vt +agxu agvy dwrm " ’

(4.72)
In view of the fact that [ g ] and [ agm] are upper triangular
matrices, and [ egw] and [ agv_yJ are lower triangular matrices,

equation (4.72) may be written as

n+l n+l n+l ntl .
't [(gd'ga)xu(gd’ga)vy ¢wss(xT’yT)+agxu abvy ¢m(ﬂ':}’f)]-

(4.73)

C =

Y=l X=1 v=y u=x

The criterion is now in a form which can be optimized with respect

to the actual system transmission matrix. This is done by taking
i

the partial derivative of C with respect to a%xu and equating the

result with zero in the usual manner.

3¢ _ n+l ntl ntl ntl _ _
9 28xu yz'-:l ::Zl :'Zy ;Zx [(ga gd)VY ¢Wss(ﬂ'ﬂ)+8gvy ¢m(x'1‘,y1‘)] 0
(4. 74)
This result is independent of u, and may be written as
n+l n+l n+l
¥=1 X2 vy {agw[¢wss(ﬂ:y‘r) + ¢m(ﬂ)ﬂ)] - dgvy ¢wss(XT,yT) =0
(4.75)

‘A solution for the elements of the optimum system transmission




matrix is therefore

=g_gvy ¢W&£ﬂ’ﬂ) x=1...n+l,
agv‘v ¢wss (ﬂ.ﬂ)ﬁm (ﬂl’ﬂ) > y=1...n+l,
V=Yoo n+l,

Equation (4.76) is in the form of a set of algebraic .
equations which may be solved for the elements of the optimum
system transmission matrix. Since the matrix is a lower triangular
matrix of order n+l, the complete solution for its elements will

require the solution of % (+1)2 + nl] = %-(n2 + 3 n+2) equations.

4.4 Physical Realizability of the Solution

The solution, equation (4.76), assumes the transmission
matrix of the desired system, the weighted autocorrelation sequence
of the signal, and the weighted autocorrelation sequence of the
noise are known.

Salzer12 has discussed the requirements for synthesizing
a function by means of a digital computer with a linear program.
Each variable in equation (4.76) is known a priori, and only the
operations of ad&ition, multiplication and division are necessary
to solve for agvy’ the general element of '.che optimum system
transmission matrix. Since the plant is assumed to be in physical

form, the compensation matrix may easily be computed and synthesized.

(&.76)




CHAPTER V
SUMMARY AND CONCLUSIONS

This thesis .has presented a mean amplitude-set-time
weighted error criterion for use in synthesi:ing optimum sampled-
data systems. Procedures for application of the criterion to both
time-invariant and time-varying systems were developed: In each
case a physically realizable solution for the optimum system was
derived,

Although the square of the system error was used in this
thesis for the amplitude weighting function, it was pointed out
that this selection is not the best in many cases, A similar prob-
lem arises in the selection of the time-weighting funqtion and the
subset-weighting pa_rameter. There is no general procedure known
which will take the place of a designer's experi:ence in the selec-
tion of these weighting functions. Many factors, among them the
characteristics and complexity of the system, the characteristics
of the inputs to the system, and cost, must be considered in making
the decision on the type of weighting function to be used, A
logical study of these factors is a desirable subject for further

work.
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Several times in the process of solvin'g for the optimum
systems it was necessary that orders of sux;mation or integration
be interchanged. The necessary and sufficient condition for this
operation to be permissible is that the summations or integrations
involved be absolutely convergent in the region of interest. .To
show this rigorously would entail detailed, specific knowledge and
consideration of every function of interest in the design of the
system. It is sufficient for the purposes of this thesis to simply
state 'that most summations and integrations arising in connection
with physical systems are absolutely convergent.

Another operation which was performed without formal
justification was the interchange of summations and averages.

This operation is peﬁnissible if the average of tlixe individual
factors of the summand has a finite value.

This thesis was concerned only with completely sampled
systems, An extension of the work herein to systems operating with
both continuous and sampled data is surely possiblé through applica-
tion of the modified z transform. Another approach would probably
be necessary, however, if variable-rate sampled-data systems or
digital-information systems were to be considered.
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